Apple 1 Expansion Board
May 31, 2015
The Apple 1 Expansion Board can expand the Apple 1 peripheral card capacity to up to 4 additional board and additional expansion boards can be added to provide for even more peripheral boards.

Figure 1 shows the Expansion Board, the board plugs into the edge connector on the side of the Apple 1 as seen in Figure 2. The connectors on the expansion chassis match the Apple 1 connector so the ACI can be moved to the expansion chassis. Also a card can be plugged on the end of the expansion chassis and even an additional expansion chassis can be plugged on the end as shown in Figure 3.

Figure 1

Apple 1 Expansion Board Description

Figure 2

Figure 3
The Apple 1 is a fairly noisy environment because of the large size of the board and being only 2 layers. This makes designing peripheral cards challenging. Figure 4 shows more detail on setting the configuration options. This expansion board design provides buffering on the board
so that the signals are restored before use by the peripheral cards. Buffering the address lines is very straight forward but buffering the Data lines is more complicated. There are jumpers on the board for activating the buffer if a board using R, S, or T lines are on the Expansion board. If more than one Expansion board is used then any downstream boards using buffering need to be active but upstream boards need to be inactive. The VMA line has active isolation so that upstream boards are not a problem but downstream Expansion boards need to be activated. Peripheral boards that decode their own address cannot be buffered. The expansion boards have the option to bypass the data buffer using an 8 element jumper. There is also a jumper that connects the VMA line so that it can be left unconnected if using the Expansion Board with an unmodified Apple 1 board.

There are also options for the clock line, $\varnothing 0, \varnothing 1$ and $\varnothing 2$ that can be chosen by resistor options. $\varnothing 0$ and $\varnothing 2$ can be buffered or unbuffered and $\varnothing 1$ can be buffered, unbuffered or $\varnothing 2$ inverted. Each choice provides slight timing differences and buffering reduces noise risk.

Figure 4

Using a CFFA1 Board

The CFFA1 Board should be installed in the on board socket of the Apple 1 and the ACI board moved to the Expansion Board as shown in Figure 5. If the CFFA1 were placed on the Expansion Board then data buffering could not be used since the CFFA1 maps directly to the data bus and data buffering is needed to add many boards.

Figure 5

For the ACI to function properly then the Expansion board jumpers should be configured as shown in Figure 6.

Figure 6

The VMA signal is a signal needed for the 6800 microcomputer but is not used on the 6502, the pin is a no-connect on the 6502 and a shorting connection area is provided on the Apple 1 board to short it to +5 V . The signal is of interest because it is available on the I/O connector. The signal goes to the NAND gate at B1 where it is combined with refresh and the result goes to the 74514 decoder disable pins 18 and 191 disabling all the decoded addresses whenever there is either a refresh or the VMA is low. The signal also goes to a chip select pin on the 6820 PIA which is redundant because the 6820 is disabled whenever the decoder is disabled. The VMA signal can be restored to availability again by replacing the short at approximately A8 labelled 6502 with a pull up resistor. A 2200 ohm resistor in parallel with a 100 pf capacitor should be used, the capacitor controls some crosstalk that has been observed on the signal. When small surface mount parts such as the 0402 parts shown in Figure 1 are used the alteration is nearly invisible.

An alternate implementation is to remove the short at the location and put the added parts under the board between pins 5 and 8 of the 6502 at location A7 or pins 12 and 14 of the DIP at location B 1 . The capacitor must be connected to the +5 V rail instead of GND.

Figure 1
This modification makes available a signal on the peripheral connector that can be used to disable anything accessed using the decoder on a cycle by cycle basis. This includes the 6820 PIA, all on board RAM, the boot ROM and any peripheral using the R, S, or T signals. This permits a peripheral to perform hardware substitution for any of those functions.

For testing the Expansion Board the Apple 1 or Clone is assumed to contain 8K of RAM mapped into the \$OXXX and \$EXXX space. The VMA Mod is not required for this testing. If the board has been modified for additional memory then that space should be avoided in the memory testing below. The Apple 1 ACI Board should be plugged into the on-board PCB Connector.

Configure the Expansion Board as shown in Figure 7.

Figure 7
With no boards plugged into the Expansion Board Power ON and make sure the computer resets.
Reset

Power OFF and install the ACI board in one of the Expansion Board slots

Power ON and Reset
Reset

Read \$C100 to \$C104
C1EG: A9 AH 2G EF FF Result should match this.
If no FRAM board is available then verify that the ACI can Read and Write media.

Configure a known good FRAM board as shown in Figure 8

Figure 8
Power off and install the FRAM board in one of the available Expansion Board slots．
Apply power and make sure the computer still resets Reset v

To test for basic operation：

Type：1006：AA
1006：？？
Type：16区
1006：$\hat{\theta}$
Type：1600：5
10曰日：AB
Type：1060
1060： 5.5

Write \＄AA to \＄1000
Read undefined at \＄1000
Read \＄1000
\＄1000＝\＄AA
Write \＄55 to \＄1000
\＄1000 Was \＄AA
Read \＄1000
$\$ 1000=\$ 55$

This verifies that the FRAM can read and write all data bits．
The next test uses a RAM test program from Mike Willegal．This program is documented on his web site＂www．willegal．net＂as＂6502 Memory Test＂．

Apply the following test sequence．

Memory Test

Load the file＂Memory Test＂from an iPod or equivalent using the ACI Board．The program will load into the Apple 1 on－board memory at $\$ 280$ to $\$ 3 A 1$ ．

Type：듵 Run the ACI at \＄C100
Type： 28 B .3 A 1 R
Load Range
Load Complete

Sets the test range from $\$ 1000$ to \＄BFFF
6GE： 77
Read undefined at $\$ 0000$
Type：280下
Run at \＄280
玉2日：H9FHSS 61 Test Completed 1st Pass
PASG 62
PASG 93 PHSS 64

Test Completed 2nd Pass
Test Completed 3rd Pass
Test Completed 4th Pass
Reset
End of Memory Test
Power OFF and move the FRAM board to the open slot on the Expansion Board
Power ON，Reset and repeat the Memory Test section．
Power OFF and exchange the positions of the ACI Board and FRAM Board．
Power ON，Reset and repeat the Memory Test section．
Power OFF and reconfigure the jumpers on the Expansion Board as shown in Figure 9.

Figure 9
Power ON, Reset and repeat the Memory Test section.

Page 11

Auxiliary Documents
Expansion Board Rev 7 Parts List

Designator	Part	Value	Manufacturer	Mfg Part No.	Description
C1	CAPACITOR	10u	TDK	C1608X5R1A106M080AC	0603 CAPACITOR
C2	CAPACITOR	1u	TDK	C1608X7R1A105K080AC	0603 CAPACITOR
C3	CAPACITOR	1u	TDK	C1608X7R1A105K080AC	0603 CAPACITOR
C4	CAPACITOR	1 u	TDK	C1608X7R1A105K080AC	0603 CAPACITOR
C5	CAPACITOR	1u	TDK	C1608X7R1A105K080AC	0603 CAPACITOR
C6	CAPACITOR	0.1u	TDK	C1608X7R1E104K080AA	0603 CAPACITOR
C7	CAPACITOR	0.1u	TDK	C1608X7R1E104K080AA	0603 CAPACITOR
C8	CAPACITOR	0.1u	TDK	C1608X7R1E104K080AA	0603 CAPACITOR
J1	HEADER	1X2	SAMTEC	TSW-102-07-L-S	1X2 0.1 In Header
J2	HEADER	1X3	SAMTEC	TSW-103-07-L-S	1X3 0.1 ln Header
J3	HEADER	1X3	SAMTEC	TSW-103-07-L-S	1X3 0.1 In Header
J4	HEADER	1X3	SAMTEC	TSW-103-07-L-S	1X3 0.1 In Header
J5	Card Connector	44 PIN 0.156	EDAC	305-044-555-201	44 Pin . 156 Extender
J6	Card Connector	44 PIN 0.156	EDAC	305-044-520-202	44-Pin . 156 Connector
J7	Card Connector	44 PIN 0.156	EDAC	305-044-520-202	44-Pin . 156 Connector
J8	Card Connector	44 PIN 0.156	EDAC	305-044-520-202	44-Pin . 156 Connector
J10	HEADER	3X8	SAMTEC	TSW-108-07-L-T	3X8 0.1 In Header
	Shorting Block	Octal	FCI	69145-216	Octal Shorting Block
J11	Header	1X3	SAMTEC	TSW-103-07-L-S	1X3 0.1 In Header
R17	RESISTOR	120,			0603 RESISTOR
R26	RESISTOR	120ת			0603 RESISTOR
R27	RESISTOR	120Ω			0603 RESISTOR
R28	RESISTOR	120Ω			0603 RESISTOR
R29	RESISTOR	nostuff			0603 RESISTOR
R30	RESISTOR	nostuff			0603 RESISTOR
R31	RESISTOR	nostuff			0603 RESISTOR
R32	RESISTOR	nostuff			0603 RESISTOR
R33	RESISTOR	100			0603 RESISTOR
R45	RESISTOR	nostuff			0603 RESISTOR
R46	RESISTOR	nostuff			0603 RESISTOR
R47	RESISTOR	nostuff			0603 RESISTOR
R48	RESISTOR	nostuff			0603 RESISTOR
R52	RESISTOR	$22 \mathrm{~K} \Omega$			0603 RESISTOR
R53	RESISTOR	$22 \mathrm{~K} \Omega$			0603 RESISTOR
R54	RESISTOR	$22 \mathrm{~K} \Omega$			0603 RESISTOR
R55	RESISTOR	22K Ω			0603 RESISTOR
R56	RESISTOR	$22 \mathrm{~K} \Omega$			0603 RESISTOR
R57	RESISTOR	$22 \mathrm{~K} \Omega$			0603 RESISTOR
R58	RESISTOR	22Kת			0603 RESISTOR
R59	RESISTOR	$22 \mathrm{~K} \Omega$			0603 RESISTOR
R60	RESISTOR	$1 \mathrm{~K} \Omega$			0603 RESISTOR
R61	RESISTOR	47Ω nostuff			0603 RESISTOR
R62	RESISTOR	470Ω			0603 RESISTOR
T1	Test Point	GND			Test Point
T2	Test Point	GND			Test Point
T3	Test Point	GND			Test Point
T4	Test Point	GND			Test Point
U1	74LCX541	Octal Buffer	FAIRCHILD	74LCX541WMX	SOIC 20-PIN
U2	74LCX541	Octal Buffer	FAIRCHILD	74LCX541WMX	SOIC 20-PIN
U3	74LCX245	Octal Bidirectional Buffer	FAIRCHILD	74LCX245WM	SOIC 20-PIN
U4	74LCX125	Quad Tri-State Buffer	ON SEMI	MC74LCX125DG	SOIC 14-PIN
U5	MC74F20	Dual 4-Input NAND	FAIRCHILD	74F20SCX	SOIC 14-PIN
U6	LM3480-3.3	3.3 V LDO	TI	LM34801M3	SOT23
U7	NC7SZU04M5X	TinyLogic Inverter	FAIRCHILD	NC7SZU04M5X	SOT23-5
U8	NC7SZ125M5X	TinyLogic Tri-State Buffer	FAIRCHILD	NC7SZ125M5X	SOT23-5
U9	NC7SZ08M5X	TinyLogic And Gate	FAIRCHILD	NC7SZ08M5X	SOT23-5

